

DIRECT OBSERVATION ASSESSMENTS:

WHAT IS A DIRECT OBSERVATION?

Direct Observation assessment is exactly as the name suggested – the assessors observe the students performing the assessment and see if they have ability to perform it properly. Practical skills particularly clinical related areas often use direct observation to assess students. Group work such as problem based learning may sometimes use direct observation to judge a student's input. Observation assessment is only effective when it follows a systematic plan to help both the assessor and the student to focus what need to be observed and recorded. An oral assessment is often used as a follow-up assessment to supplement for any questions. Sometimes, there is no effective alternative to direct observation.

STRUCTURE OF OBSERVATION ASSESSMENT

The structure of an observation assessment greatly depends on the discipline in which the assessment is taken place, it also depends if the assessor is observing the entire work or only part of the work. In general, the assessor will observe for 5 -10 minutes, make a field note to help with feedback and grading, and maybe followed with an interview/oral assessment.

	Declarative	
Y	Functioning	
	Timely to Set	CF
Y	Timely to Answer	A
Y	Timely to Correct	R
Y	Timely to provide Feedback	Ğ
	Suitable for Large Class	Ę
	Can substitute with Computers	HARACTERISTICS
	Passive	
Y	Active	Š
Y	Process Oriented Method	
Y	Product Oriented Method	

Y	Yes		
P	Possibly		

Above shows the general characteristics of the assessment method and the type of skills that are *typically* assessed by the method. Both Blooms' taxonomy and Biggs' Solo taxonomy are indicated.

		_				
Y	Knowledge		ВІ			
Y	Comprehension	Blooms Level of Taxonomy				
Y	Application of Knowledge					
	Analysis					
	Synthesis					
	Evaluative Skills		of			
Y	Pre-structural	Qu	Q.			
Y	Uni-structural	antita	SOLO Quantitative			
Y	Multi-Structural	O T		SASI		
	Relational Level	SOLO Taxonomy antitative Qualitat		axonoi Qual		JRAB
	Extended Abstract Level	Qualitative	ny	WEASURABLE QUANTITIES		
	Leadership			A		
	Life long Skills					
	Creative skills					
	Writing Skills			ES		
Y	Team Work	Ę				
Y	Communication Skills	Communication Skills 2				
	Presentation Skills	THER QUANTITIES				
	Memorizing Skills					
Y	Practical/ Physical Skills	TIES				
Y	Think under pressure				S	
	Project Management					
	Time management					

ADVANTAGES OF DIRECT OBSERVATION

• Observation may sometimes be the only assessment method possible.

- There can be no plagiarism or false reports.
- It is a great way to assess practical.

DISADVANTAGES OF DIRECT OBSERVATION

- Direct observation does not assess the higher-order levels of learning outcomes, and is often not adequate for a full assessment; oral questioning or other supplement assessments may be required.
- Direct observation assessment requires a lot of time to assess and to prepare thus, it is an expensive way of assessing.
- The presence of the observer can change the student's performance as being watched can be intimidating for many students. Furthermore, the dynamic of the observation room may change as the observer/assessor enters. It is often debatable of whether the observer/assessor should be visible or hidden. So where, who and how the observation is being assessed are all factors which may affect a good observation assessment.
- To ensure high efficiency and reliability, clear grading standards for all parties are essential. However, grading criteria for observation assessment can be trivial to design and develop.
- Immediate feedback is useful, but sometimes that is difficult due to time constraints.
- Practical work is usually ephemeral and dissenting views may later be contested if notes or recordings are not documented clearly.

HOW TO DESIGN GOOD OBSERVATION ASSESSMENTS?

- Ensure the students know what the objectives of the observation assessment are.
- Provide students the time period, location, guidelines, requirements, assessment criteria and if there are items that are not to be included. The students should also be aware who is going to assess them tutor, peers and/or self? And if peers or self are going to assess, would the weightings be the same as the tutor.
- Prepare a structured marking sheet for all assessors.
- Feedback is very important for a good observation assessment.

GRADING CRITERIA AND GRADING STANDARDS

As direct observation is usually assessed on practical type of work, below is a sample rubric for observing in a laboratory. As mentioned before, the grading criteria changes depending whether the assessor is observing the entire work or only part of the work.

(From Recipe for Success, accessed 05 July 2008 http://myt4l.com/index.php?v=pl&page_ac=view&type=tools&tool=rubricmaker)

GRADING CRITERIA	Excellent	Proficient	Average	Poor
Lab Work- Purpose: Defines goal of experiment	Used clear, accurate language to restate question or problem in student\'s own words. Provided examples of similar experiments.	Used proper vocabulary to state question or problem.	Stated question or problem using incorrect vocabulary. Did not state problem in student\'s own words.	Did not state question or problem.

Lab Work- Hypothesis:	Obvious connection between the	Hypothesis and problem	No connection between	Hypothesis was missing or was
Prediction between	problem	were clearly	hypothesis and	unrelated to the
experiment and	and predicted	connected.	experiment. No	experiment. Did not
results	outcome. Provided references	Hypothesis refuted or	clear way to prove or disprove	mention dependent and independent
	showing that	defended	hypothesis by	variables.
	hypothesis	established	performing	variables.
	refutes or defends	knowledge.	experiment.	
	established	Variables were	Variables were not	
	knowledge.	identified and	completely	
	Variables were	classified as	described or	
	identified	dependent and	were incorrectly	
	and classified as	independent.	classified as	
	dependent and		dependent or	
1 -1- 14/1-	independent.		independent.	1
Lab Work- Materials	Made complete list of materials used.	Made complete list of materials	Did not list one or two items used.	List of materials
and Equipment:	Explained why	used. Showed	Did not show	was missing or showed only
List of materials	materials were	information about	details about items	a few of the
used	chosen.	size and units of	used.	materials used.
	5.1000	measurement.		materiale descar
Lab Work-	Setup was	Setup included	Description was	Setup was not
Methods:	documented	descriptive text	general or did not	described or
Description of	completely. Method	and	include diagrams.	documented. Step-
process and setup	was also	diagrams were	Procedure was	bystep procedure
	documented	provided if	missing multiple	was missing or
	completely and accurately, making	appropriate. Experiment can	steps. Information provided is not	inadequate.
	experiment easy to	be	sufficient to	
	reproduce.	reproduced using	replicate	
		the steps	experiment.	
		provided.	•	
Lab Work-Data	All data was	All data was	Data was	Included little or no
Quality:	complete and	complete and	incomplete.	relevant data. Data
Accurate	accurately labeled.	accurately	Some data was not	was not labeled
measurement	Data sampled at	labeled.	labeled using	using appropriate
and labeling	appropriate intervals as	Data was sampled at appropriate	appropriate units of measure. Data	units of measure. Data sampling
	defined in Methods	intervals.	sampling intervals	intervals were
	section of lab	intorvalo.	inadequate to	random or
	report.		support hypothesis.	inadequate.
Lab Work-Data	Identified and	Identified valid	Only identified	Trends were
Analysis:	described trends	trends and made	obvious trends or	missing or were not
Student analyzed	and made	appropriate	found trends	supported by the
data and identified	appropriate	conclusions based	not fully supported	data collected.
trends	conclusions based	on the data.	by the data.	Obvious trends
	on the data. Used statistical	Documented calculations made		were overlooked.
	techniques to	during data		
	identify and	analysis.		
	disregard flawed	, -		
	data. Showed			
	calculations.			
Lab Work-	Followed all safety	Followed all safety	Did not follow all	Did not follow
Safety:	rules and wrote	rules.	safety rules.	safety rules and
Follows rules	about safety in lab			caused a
and uses good judgment	report.			dangerous situation.
lia Chan Emaile	Cacilia Chan@aaut hlzu	1	<u> </u>	oituation.

Lab Work-	Restated problem	Problem was	Problem was	Original problem
Conclusion:	and hypothesis.	restated.	restated.	was not restated.
Summarizes	Justified design and	Statements and	Conclusions were	Findings were
findings and	methods of	conclusions were	simplistic.	not summarized.
compares actual	experiment.	based on the data	No clear	Conclusions were
results with	Findings were	collected.	relationship	not relevant to
expected results	discussed in detail.	Showed a strong	between	hypothesis.
	Conclusions directly	relationship	conclusions and	
	address hypothesis.	between	hypothesis.	
	Statements and	conclusions and		
	conclusions were	hypothesis.		
	supported by the			
	data.			

WEB REFERENCES AND RESOURCES:

Direct Observation Assessment

Recipe for Success

http://myt4l.com/ Accessed: 05 July 2008

IMAGES, Improving Measurement and Geometry in Elementary Schools http://images.rbs.org/assessment/observation.shtml Accessed: 05 July 2008

The Alberta Rural Physician Action Plan

http://www.practicalprof.ab.ca/observation_feedback/practical_observation_techniques.html Accessed: 05 July 2008

ATHERTON J S (2005) *Teaching and Learning: Assessment: direct observation* [On-line] UK: Available: http://www.learningandteaching.info/teaching/assessment_direct.htm Accessed: 5 July 2008

Eindhoven, University of Technology

http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lecturenotes/UFTdirectobservation.pdf, Accessed: 5 July 2008

Toolpack Consulting

http://www.toolpack.com/d/observations.html Accessed: 05 July 2008

Tips for Students

Park University, CETL http://www.park.edu/cetl/quicktips/

To Reference these pages

Copy and paste the text below

Chan C (2008) Assessment: Direct Observation Assessment, Assessment Resource Centre, University of Hong Kong [http://arc.caut.hku.hk]: Available: Accessed: DATE